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Abstract
We apply the maximum entropy principle to construct the natural invariant
density and the Lyapunov exponent of one-dimensional chaotic maps. Using
a novel function reconstruction technique, that is based on the solution of the
Hausdorff moment problem via maximizing Shannon entropy, we estimate
the invariant density and the Lyapunov exponent of nonlinear maps in one
dimension from a knowledge of finite number of moments. The accuracy
and the stability of the algorithm are illustrated by comparing our results to a
number of nonlinear maps for which the exact analytical results are available.
Furthermore, we also consider a very complex example for which no exact
analytical result for the invariant density is available. A comparison of our
results to those available in the literature is also discussed.

PACS numbers: 02.30.Zn, 05.10.−a, 02.60.Pn, 05.45.Ac

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The classical moment problem (CMP) is an archetypal example of an inverse problem
that involves the reconstruction of a non-negative density distribution from the knowledge
of (usually finite) moments [1–6]. The CMP is an important inverse problem that has
attracted researchers from many diverse fields of science and engineering ranging from
geological prospecting, computer tomography and medical imaging to transport in complex
inhomogeneous media [7]. Many of the early developments in the fields such as continued
fractions and orthogonal polynomials have been inspired by this problem [2, 8]. The extent to
which an unknown density function can be determined depends on the amount of information
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available in the form of moments provided that the underlying moment problem is solvable.
For a finite number of moments, it is not possible to obtain the unique solution and one needs
to supplement additional information to construct a suitable solution. The maximum entropy
(ME) provides a suitable framework to reconstruct a least biased solution by simultaneously
maximizing the entropy and satisfying the constraints defined by the moments [9].

In this communication we address how the ME principle can be applied to the Hausdorff
moment problem [1] in order to estimate the Lyapunov exponent and the associated natural
invariant density of a nonlinear dynamical system. In particular, we wish to apply our ME
ansatz to a number of nonlinear iterative maps in one dimension for which the analytical results
in the closed form are available. The problem was studied by Steeb et al [10] via entropy
optimization for the tent and the logistic maps using the first few moments (up to 3). Recently,
Ding and Mead [11, 12] addressed the problem and applied their ME algorithm based on power
moments to compute the Lyapunov exponents for a number of chaotic maps. These authors
generated Lyapunov exponents using up to the first 12 moments, and obtained an accuracy of
the order of 1%. In this paper, we address the problem using a method based on an iterative
construction of the ME solution of the moment problem, and apply it to compute Lyapunov
exponents and the natural invariant densities for a number of one-dimensional chaotic maps.
Unlike the power moment problem that becomes ill-conditioned with increasing number of
moments, the hallmark of our method is to construct a stable algorithm by resort to the
moments of the Chebyshev polynomials. The resulting algorithm is found to be very stable
and accurate, and is capable of generating Lyapunov exponents with an error less than 1
part in 103, which is significantly lower than any of the methods reported earlier [10, 11].
Furthermore, the method can reproduce the natural invariant density of the chaotic maps that
shows point-wise convergence to the exact density function whenever available as well as
densities that cannot be represented in a closed analytical form.

The rest of the paper is organized as follows. In section 2, we briefly introduce the
Hausdorff moment problem and a discrete ME ansatz to construct the least biased solution
that satisfies the moment constraints. This is followed by section 3, where we present the
natural invariant density as an eigenfunction of the Perron–Frobenius operator associated with
the dynamical system represented by the iterative maps [13]. In section 4, we discuss how
the moments of the invariant density are computed numerically via time evolution of the
dynamical variable, which are then used to construct the Lyapunov exponents and the natural
invariant densities of the maps. Finally, in section 5, we discuss the results of our method and
compare our approximated results to the exact results and to those available in the literature.

2. Maximum entropy approach to the Hausdorff moment problem

The CMP for a finite interval [a, b], also known as the Hausdorff moment problem, can be
stated loosely as follows. Consider a set of moments

μi =
∫ b

a

xiρ(x) dx i = 0, 1, 2, . . . , m, i � m (1)

of a function ρ(x) integrable over the interval with μi < ∞ ∀ x ∈ [a, b] and ρ(x) has bounded
variation. The problem is to construct a non-negative function ρ(x) from the knowledge of
moments. The necessary and sufficient conditions for a solution to exist were given by
Hausdorff [1]. The moment problem and its variants have been discussed extensively in
the literature [2, 3, 14, 15] at length, and an authoritative treatment of the problem with
applications to many physical systems was given by Mead and Papanicolaou [4]. For a finite
number of moments, the problem is underdetermined and it is not possible to construct the
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unique solution from the moment sequence unless further assumptions about the function are
made. Within the ME framework, one attempts to find a density ρA(x) that maximizes the
information entropy functional,

S[ρ] = −
∫ b

a

ρA(x) ln[ρA(x)] dx, (2)

subject to the moment constraints defined by (1). The resulting solution is an approximate
density function ρA(x) and can be written as via functional variation of the unknown
density [4]

ρA(x) = exp

(
−

m∑
i=0

λix
i

)
. (3)

The normalized density function ρ(x) is often referred to as the probability density by
mapping the interval onto [0, 1] without any loss of generality. For a normalized density μ0 =
1, and the Lagrange multiplier λ0 can be shown to be connected to the others via

eλ0 =
∫ 1

0
exp

(
−

m∑
i=1

λix
i

)
.

A reliable scheme to match the moments numerically for the entropy optimization problem
(EOP) was discussed by one of us in [16]. The essential idea behind the approach was to use a
discretized form of entropy functional and the moment constraints using an accurate quadrature
with a view to reduce the original constraint optimization problem in primal variables to an
unconstrained convex optimization program involving dual variables. This guarantees the
existence of the unique solution2, which is least biased and satisfies the moment constraints
defined by (1). Using a suitable quadrature, the discretized entropy and the moment constraints
can be expressed as respectively

S[ρ] = −
∫ 1

0
ρ(x) ln[ρ(x)] dx ≈ −

n∑
j=1

ωjρj ln ρj (4)

μi =
∫ 1

0
xiρ(x) dx ≈

n∑
j=1

(xj )
iωjρj , (5)

where ωi’s are the set of weights associated with the quadrature and ρj is the value of the
distribution at x = xj . If ωj and xj are the weight and abscissas of the Gaussian–Legendre
quadrature, equation (4) is exact for polynomials of order up to 2 n − 1, and

n∑
j=1

ωj = 1
n∑

j=1

ωjρj = 1. (6)

The task of our EOP can now be stated as, using ρ̃j = ωjρj and tij = (xj )
i , to optimize the

Lagrangian

L(ρ̃, λ̃) =
n∑

j=1

ρ̃j ln

(
ρ̃j

ωj

)
−

m∑
i=1

λ̃i

⎛
⎝ n∑

j=1

tij ρ̃j − μi

⎞
⎠ (7)

2 The solution is unique in the sense that it is least biased as far as the entropy of the density is concerned, and the
Hausdorff conditions are satisfied. There is no guarantee that the ME solution would be close to the exact solution
particularly for very few moments. However, the quality of the ME solution drastically improves with increasing
number of moments, and numerical experiments for cases where exact solutions are known generally confirm that the
ME principle indeed can produce the correct solution.
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where 0 � ρ̃ ∈ Rn and λ̃ ∈ Rm respectively are the primal and dual variables of the EOP, and
the discrete solution is given by the functional variation of the Lagrangian in (7) with respect
to the unknown density as before,

ρ̃j = ωj exp

(
m∑

i=1

tij λ̃i − 1

)
, j = 1, 2, . . . , n. (8)

Equations (4)–(8) can be combined together and a set of nonlinear equations can be constructed
to solve for the Lagrange multipliers λ̃:

Fi(λ̃) =
n∑

j=1

tijωj exp

(
m∑

k=1

tkj λ̃k − 1

)
− μi = 0, i = 1, 2, . . . , m.

The set of nonlinear equations above can be reduced to an unconstrained convex
optimization problem involving the dual variables:

min
λ̃∈Rm

⎡
⎣D(λ̃) ≡

n∑
j=1

ρ̃j exp

(
m∑

i=1

tij λ̃i − 1

)
−

m∑
i=1

μiλ̃i

⎤
⎦ . (9)

By iteratively obtaining an estimate of λ̃, D(λ̃) can be minimized, and the EOP solution
ρ(λ̃∗) can be constructed from (8). In the above equation, tij = xi

j corresponds to power
moments, but the algorithm can be implemented using Chebyshev polynomials as well. The
details of the implementation of the above approach for shifted Chebyshev polynomials were
discussed in [16]. The ME solution in this case is still given by (3) except that xi within the
exponential term is now replaced by T ∗

i (x), where T ∗
i (x) is the shifted Chebyshev polynomials.

In the following, we apply the algorithm based on the shifted Chebyshev moments to construct
the invariant density and the Lyapunov exponents of few one-dimensional maps.

3. Lyapunov exponents and the natural invariant density of chaotic maps

The Lyapunov exponent of an ergodic map can be expressed in terms of the natural invariant
density of the map:

� =
∫

ρ(x)ln|f ′(x)| dx, (10)

where ρ(x) is the invariant density and f ′(x) is the first derivative of the map f (x) with respect
to the dynamical variable x. The invariant density of a map can be defined as an eigenfunction
of the Perron–Frobenius operator associated with the map. Given an iterative map, xn+1 =
f (xn), one can construct an ensemble of initial iterates {x0} defined by a density function
ρ0(x) in some subspace of the phase space and consider the time evolution of the density
in the phase space instead of the initial iterates x0. The corresponding evolution operator L
is known as the Perron–Frobenius operator, which is linear in nature as each member of the
ensemble in the subspace evolves independently. The invariant density can be written as

Lρ(x) = ρ(x) (11)

where ρ(x) is a fixed point of the operator L in the function space. In general, there may exist
multiple fixed points but only one has a distinct physical meaning, which is referred to as the
natural invariant density. Following Beck and Schlögl [13], the general form of the operator
in one dimension can be written as

Lρ(y) =
∑

x∈f −1(y)

ρ(x)

|f ′(x)| . (12)

4



J. Phys. A: Math. Theor. 43 (2010) 125103 P Biswas et al

For a one-dimensional map, one can define the Lyapunov exponent as the exponential rate
of divergence of two arbitrarily close initial points separated by δxn=0 = |x0 − x ′

0| in the limit
n → ∞, and the exponent can be expressed as the average of the time series of the iterative
map,

� = 1

N
lim

N→∞

N−1∑
n=0

ln|f ′(xn)|. (13)

For ergodic maps the time average of the Lyapunov exponent can be replaced by the
ensemble average,

� =
∫

dxρ(x)ln|f ′(x)| (14)

using the natural invariant density. Equation (14) suggests that the Lyapunov exponent can be
obtained from a knowledge of the reconstructed natural invariant density from the moments.
In the following we consider some nonlinear maps to illustrate how the normalized invariant
density and the Lyapunov exponent can be calculated using our discrete entropy optimization
procedure.

4. Reconstruction of invariant density as a maximum entropy problem

In the preceding sections, we have discussed how a probability density can be constructed
from a knowledge of the moments (of the density) by maximizing the information entropy
along with the moment constraints. Once the density is reconstructed, the Lyapunov exponent
can calculated from (14) using the reconstructed density. The calculation of the moments
can proceed as follows. We consider a dynamical system represented by a nonlinear one-
dimensional map,

xn+1 = f (xn) (15)

where n = 0, 1, 2, . . . and x0 ∈ [0, 1]. The power moments of the time evolution of the iterate
xn can be expressed as [10]

xi = lim
t→∞

1

t

t∑
n=0

(xn)
i .

Since we are working with the shifted Chebyshev polynomials, the corresponding
moments can be obtained by replacing xi by T ∗

i (x) in the equation above:

μi = lim
t→∞

1

t

t∑
n=0

Ti
∗(xn) (16)

where T ∗
i (x) are the shifted Chebyshev polynomials and are related to Chebyshev polynomials

via T ∗
i (x) = Ti(2 x − 1), and x ∈ [0, 1]. A set of shifted Chebyshev moments can be

constructed numerically from (16), which can be used to obtain an approximate natural
invariant density as discussed earlier. This approximate density can then be used to calculate
the Lyapunov exponents for the maps via (14). By varying the number of moments, the
convergence of the approximated invariant density can be systematically studied and the
accuracy of the Lyapunov exponent can be improved. We first apply our method to the maps
for which exact analytical results are available. Thereafter, we consider a nontrivial case where
neither the Lyapunov exponent nor the density can be obtained analytically and consists of
many sharp peaks with a fine structure which is difficult to represent using the form of the
analytical expression proposed by the ME solution.
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Table 1. Lyapunov exponents from the reconstructed invariant density for the map f 1.

Moments �maxent Percentage error

20 0.691 577 0.226
40 0.692 786 0.055
60 0.692 999 0.021
80 0.693 061 0.012

100 0.693 109 0.006

�exact ln 2 ≈ 0.693 147
�Ref. [11] 0.692 90

5. Results and discussions

Let us first consider the case for which the invariant density function and the Lyapunov
exponent can be calculated analytically. We begin with the map

f1(x) =

⎧⎪⎪⎨
⎪⎪⎩

2x

1 − x2
for 0 � x �

√
2 − 1

1 − x2

2x
for

√
2 − 1 � x � 1.

(17)

The invariant density for this map can be written as

ρ1(x) = 4

π(1 + x2)
(18)

and the Lyapunov exponent is given by ln 2, which can be obtained analytically from (14).
The approximated Chebyshev moments for the map f1(x) can be obtained numerically from
(16). The ME ansatz is then applied to reconstruct the invariant density, and the Lyapunov
exponent is obtained from this estimated invariant density. The results for the Lyapunov
exponent are summarized in table 1 for different set of moments. The data clearly indicate that
the approximated Lyapunov exponent rapidly converges to the exact value ln 2 ≈ 0.693 147
with the increase of the number of moments. The error associated with the exponent is also
tabulated, which shows that for the case of 100 moments the percentage error is as small as
0.006 reflecting the accurate and the stable nature of the algorithm. In order to verify our
method further, we now compare the approximated density to the exact density given by (18).
This is particularly important because integrated quantities (such as the Lyapunov exponent)
are, in general, less sensitive to any approximation then the integrand (the invariant density)
itself, and this often makes it possible to obtain an accurate value of the Lyapunov exponent
from a reasonably correct density. In figures 1 and 2, we have plotted the approximated
densities for two different set of moments along with the exact density. Since the density is
smooth and free from any fine structure, only the first 20 moments are found to be sufficient to
yield the correct shape, although some oscillations are present in the reconstructed density. On
increasing the number of moments, the oscillations begin to disappear and for 100 moments
the approximate density matches very closely with the exact one. The reconstructed density
is shown in figure 2, and it is evident from the figure that the density practically matches
point-wise with the exact density.

As a further test of our method, we now consider the case of logistic map. The map plays
a very important role in the development of the theory of nonlinear dynamical systems [17],
and can display a rather complex behavior depending on the control parameter r defined via

f2(x) = r x(1 − x). (19)

6
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Figure 1. The reconstructed density from the first 20 Chebyshev moments for the map f1(x)

along with the exact density. Although the general shape of the density appears correctly, some
oscillations are present in the data in the absence of sufficient information.

Figure 2. The reconstructed density obtained from the first 100 moments for the map f1(x) along
with the exact density. The approximate density now effectively matches point-by-point with the
exact one with the exception of few points near the edges of the interval.

We consider three representative values of r to illustrate our method in the chaotic and non-
chaotic domains. In particular, we choose (a) r = 5

2 , (b) r = 4 and (c) r = 3.792 85. The
analytical densities are known only for the first two cases, and are given respectively by

ρchaotic
2 (x) = 1

π
√

x − x2
for r = 4 (20)

7
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Figure 3. The reconstructed density for the logistic map for r = 5
2 obtained from the first 40

Chebyshev moments. The density consists of only two non-zero values in the interval [0.593,
0.601]. The exact density is a δ-function centered at x0 = 3

5 .

Table 2. Lyapunov exponents from the reconstructed invariant density for the logistic map f 2 for
r = 5

2 .

Moments �maxent Percentage error

10 −0.693 575 0.063
20 −0.693 851 0.101
30 −0.693 203 0.008
40 −0.693 155 0.002

�exact − ln 2 ≈ −0.693 147

ρfixed
2 (x) = δ

(
x − 3

5

)
for r = 5

2
. (21)

For the remaining value of r = 3.792 85, no analytical expression for the density is known and
the density consists of a number of sharp peaks along with some fine structure. The density
in this case can be obtained numerically by iterating a set of initial x0, and constructing a
histogram averaging over a number of configurations [13]. For the purpose of comparison to
our ME results, we use this numerical density here.

In tables 2 and 3 we have listed the values of the Lyapunov exponents for different
number of moments for r = 5

2 and r = 4, respectively. The errors associated with � are also
listed in the respective tables. The invariant density for r = 5

2 is a δ-function, and the exact
analytical value of the exponent is given by −ln 2. Since the invariant density is a δ-function
at x0 = 3

5 , it is practically very difficult to reproduce the density accurately using a finite
number of quadrature points. However, our ME algorithm produces an impressive result by
generating only two non-zero values in the interval containing the point x0 = 3

5 using the
Gaussian quadrature with 192 points. The approximate density for a set of 40 moments is

8
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Table 3. Lyapunov exponents from the reconstructed invariant density for the logistic map f 2 for
the control parameter r = 4.

Moments �maxent Percentage error

40 0.690 703 0.35
60 0.692 101 0.15
80 0.692 850 0.04

100 0.693 319 0.02

�exact ln 2 ≈ 0.693 147
�Ref.[11] 0.684 25

shown in figure 3. The two non-zero values of the density are given by 19.781 and 105.264
within the interval [0.593, 0.601]. It may be noted that for a normalized density, one can
estimate the maximum height of the δ-function to be of the order of (�x)−1 ≈ 125.0, where
�x is the interval containing the point x0 = 3

5 point3. Furthermore, we have found that the
result is almost independent of the number of moments (beyond the first 20), and the δ-function
has been observed to be correctly reproduced with few non-zero values using only as few as
first 10 moments. Table 3 clearly shows that the first 3 digits have been correctly reproduced
using only the first 10 moments. On increasing the number of moments, there is but very little
improvement of the accuracy of the Lyapunov exponent. For each of the moment sets, the
density is found to be zero throughout the interval except at few (two for the set 40 and higher)
points mentioned above. In the absence of any structure in the density, higher moments do not
contribute much to the density reconstruction, and hence it is more or less independent of the
number of moments. Since the contribution to the Lyapunov exponent is coming only from
the few (mostly two) non-zero values, and that these values fluctuate with varying moments,
an oscillation of these values causes a mild oscillation in the numerical value of the Lyapunov
exponent.

We now consider the case r = 4. The exact density in this case is given by (20) that has
singularities at the end points x = 0 and 1. It is therefore instructive to study the divergence
behavior of the reconstructed density near the end points. In figure 4 we have plotted the
approximate density obtained using the first 90 moments along with the exact density. The
reconstructed density matches excellently within the interval. The divergence behavior near
x = 0 is also plotted in the inset. Although there is some deviation from the exact density, the
approximate density matches very well except at very small values of x. Such observation is
also found to be true near x = 1. The results for the Lyapunov exponent are listed in table 3 for
different number of moments. It is remarkable that the exponent has been correctly produced
up to 3 decimal points with 100 moments. While the error in this case is larger compared to
the cases discussed before for the same number of moments, it is much smaller than the result
reported earlier [11]. Our numerical investigation suggests that the integral converges slowly
for the Gaussian quadrature in this case owing to the presence of a logarithmic singularity in
the integrand. This requires one to use more Gaussian points to evaluate the integral correctly.
However, since the density itself has singularities at the end points, attempts to construct the
density very close to the end points introduce error in the reconstructed density that affects
the integral value. The use of the Gauss–Chebyshev quadrature would ameliorate the latter

3 For a sufficiently small interval, δ(x − x0) can be approximated by a box function of width �x around x0 and of
height h, giving h �x = 1 to satisfy the normalization condition. The height of the δ-function obtained in our work
is very close to this limiting value.

9
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Figure 4. The reconstructed density for the map f2(x) for r = 4 obtained from the first 90 moments
along with the exact density. The density matches excellently within the interval. The divergence
behavior at the left edge near x = 0 is also shown in the inset.

Figure 5. The reconstructed density for the logistic map for r = 3.7928 from the first 20 Chebyshev
moments along with the ‘exact’ numerical density obtained via histogram method and averaged
over 5000 configurations. While our ME algorithm produces most of peaks in the density, the
fine structure of the peaks is missing in the absence of information coming from the higher order
moments.

problem, but for the purpose of generality (and in the absence of the prior knowledge of the
density) we refrain ourselves from using the Gauss–Chebyshev quadrature.

Finally, we consider a case where analytical results are not available and the density
consists of several sharp peaks having a fine structure in the interval [0, 1]. As mentioned

10
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Figure 6. The reconstructed density for logistic map for r = 3.7928 obtained from the first 150
Chebyshev moments. The corresponding ‘exact’ density obtained from the map averaged over
5000 configurations is also plotted for comparison. The height and the position of the peaks are
now correctly reproduced using the first 150 moments.

earlier, the case r = 3.792 85 for the logistic map provides such an example. The ‘exact’
numerical density for this case is shown in figure 5 along with the reconstructed density
for 20 moments. The former is obtained by iterating several starting x0 and constructing
a histogram of the distribution of the iterates in the long time limit, which is then finally
averaged over many configurations. While our ME ansatz produces most of the peaks in the
exact density using the first 20 moments, the fine structure of the peaks is missing and so
is the location of the peaks. The reconstructed density can be improved systematically by
increasing the number of moments, and for 150 moments the density matches very good with
the exact density. In figure 6 we have plotted both the reconstructed density for the first 150
moments and the numerical density from the histogram method. The result suggests that for
the sufficient number of moments our algorithm is capable of reproducing the density which
is highly irregular, non-differentiable and consists of several sharp peaks.

6. Conclusion

We apply an iterative ME optimization technique based on Chebyshev moments to calculate
the invariant density and the Lyapunov exponent for a number of one-dimensional nonlinear
maps. The method consists of evaluating approximate moments of the invariant density
from the time evolution of the dynamical variable of the iterative map, and applying a novel
function reconstruction technique via ME optimization subject to moment constraints. The
computed Lyapunov exponents from the approximated natural invariant density are found to
be in excellent agreement with the exact analytical values. We demonstrate that the accuracy of
the Lyapunov exponent can be systematically improved by increasing the number of moments
used in the (density) reconstruction process. An important aspect of our method is that it is
very stable and accurate, and that it does not require the use of extended precision arithmetic

11
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for solving the moment problem. A comparison to the results obtained from power moments
suggests (but is not discussed here) that the algorithm based on Chebyshev polynomials gives
more accurate results than the power moments. This can be explained by taking into account
the superior minimax property of the Chebyshev polynomials and the form of the ME solution
for Chebyshev moments4 [18]. Our method is particularly suitable for maps for which the
exact analytical expression for invariant density are not available. Since the method can deal
with a large number of moments, an accurate invariant density can be constructed by studying
the convergence behavior with respect to the number of moments. The Lyapunov exponent
can be obtained from the knowledge of the invariant density of the maps. Finally, the method
can also be adapted to solve nonlinear differential and integral equations as discussed in [19]
and [20], which we will address in a future communication.
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